Rabu, 27 April 2011

mekatronik

SENSOR

Secara umum berdasarkan fungsi dan penggunaannya sensor dapat dikelompokan menjadi 3 bagian yaitu:
 sensor thermal (panas)
 sensor mekanis
 sensor optik (cahaya)

 SENSOR THERMAL (TEMPERATURE)
Sensor thermal adalah sensor yang digunakan untuk mendeteksi gejala perubahan panas/temperature/suhu pada suatu dimensi benda atau dimensi ruang tertentu. Setiap sensor suhu memiliki temperatur kerja yang berbeda, untuk pengukuran suhu disekitar kamar yaitu antara -350 C sampai 1500 C, dapat dipilih sensor NTC, PTC, transistor, dioda dan IC hibrid. Untuk suhu menengah yaitu antara 1500 C sampai 7000C, dapat dipilih thermocouple dan RTD. Untuk suhu yang lebih tinggi sampai 15000 C, tidak memungkinkan lagi dipergunakan sensor-sensor kontak langsung, maka teknis pengukurannya dilakukan menggunakan cara radiasi. Untuk pengukuran suhu pada daerah sangat dingin dibawah 650 K = -2080 C (00 C = 273,160 K ) dapat digunakan resistor karbon biasa karena pada suhu ini karbon berlaku seperti semikonduktor. Untuk suhu antara 650 K sampai -350 C dapat digunakan kristal silikon dengan kemurnian tinggi sebagai sensor.

 Bimetal
Bimetal adalah sensor temperatur yang sangat populer digunakan karena kesederhanaan yang dimilikinya. Bimetal biasa dijumpai pada alat strika listrik dan lampu kelap-kelip (dimmer). Bimetal adalah sensor suhu yang terbuat dari dua buah lempengan logam yang berbeda koefisien muainya (α) yang direkatkan menjadi satu.

 Termistor
Termistor atau tahanan thermal adalah alat semikonduktor yang berkelakuan sebagai tahanan dengan koefisien tahanan temperatur yang tinggi, yang biasanyanegatif. Umumnya tahanan termistor pada temperatur ruang dapat berkurang 6% untuk setiap kenaikan temperatur sebesar 10C. Kepekaan yang tinggi terhadap perubahan temperatur ini membuat termistor sangat sesuai untuk pengukuran, pengontrolan dan kompensasi temperatur secara presisi.


 Termokopel
 Pembuatan termokopel didasarkan atas sifat thermal bahan logam. Jika sebuah batang logam dipanaskan pada salah satu ujungnya maka pada ujung tersebut elektron-elektron dalam logam akan bergerak semakin aktif dan akan menempati ruang yang semakin luas, elektron-elektron saling desak dan bergerak ke arah ujung batang yang tidak dipanaskan. Dengan demikian pada ujung batang yang dipanaskan akan terjadi muatan positif.



 SENSOR MEKANIS
Sensor mekanis adalah sensor yang mendeteksi perubahan gerak mekanis, seperti perpindahan atau pergeseran atau posisi, gerak lurus dan melingkar, tekanan, aliran, level dsb.

 Sensor Gaya
Berfungsi untuk mengubah gaya, beban, torsi dan regangan menjadi resistansi/hambatan. Sensor ini terbuat dari kawat tahanan tipis berdiameter sekitar 1 mm. Kawat tahanan yang biasa digunakan adalah campuran dari bahan konstantan (60 % Cu dan 40 % Ni). Kawat tahanan ini dilekatkan pada papan penyangga membentuk strain gage dengan tipe-tipe:
 Bonded strain gage

Susunan kawat tahanan di dalamnya berliku-liku sehingga memudahkan pendeteksian terhadap gaya tekanan yang tegak lurus dengan arah panjang lipatan kawat, karena tekanan akan menarik kabel sehingga meregang. Dengan meregannya starin gage, maka terjadi perubahan resistansi kawat.
b. Unbonded strain gage

Jenis strain gage yang dibentuk dengan kawat tahanan yang terpasang lurus dan simetris. Jika papan atau rangka mendapat tekanan dari luar, maka resistansinya akan bertambah.
Konstruksi strain gage :

Strain gage dipasang/ditempelkan pada logam yang lentur yang dengan permukaan yang rata agar saat logam meregang strain gage juga ikut meregang tetapi tidak bergeser dar posisinya. Dengan melengkungnya besi/logam membuat strain gage melengkung juga/meregang sehingga resistansinya berubah.


 Sensor Tekanan
Digunakan untuk mengubah tekanan menjadi induktansi. Konstruksi sensor tekanan:

Prinsip Kerja :
Perubahan tekanan pada kantung menyebabkan perubahan posisi inti kumparan sehingga mengakibatkan perubahan induksi magnetik pada kumparan. Kumparan yang digunakan adalah kumparan CT (center tap), dengan demikian apabila inti mengalami pergeseran maka induktansi pada salah satu kumparan bertambah sementara induktansi pada kumparan yang lain berkurang. Kemudian pengubah sinyal berfungsi untuk mengubah induktansi magnetik yang timbul pada kumparan menjadi tegangan yang sebanding.
Pemanfaatan sensor tekanan: mengukur tinggi suatu cairan.
Untuk mengukur tekanan statis atau tinggi suatu cairan dapat ditentukan dengan rumus :
P = d.g.h
Keterangan:
P = tekanan statis (pascal)
D = kepadatan cairan ( kg/m3)
G = konstanta gravitasi (9,81 m/s2)
H = tinggi cairan (m)
Jenis sensor tekanan yang lain adalah tabung Bourdon.

LVDT (Linear Variabel differential Transformer).
Prinsip kerja:
Apabila tekanan dalam tabung bertambah, maka tabung akan bergerak menyusut dan bila tekanan pada tabung berkurang, maka tabung akan bergerak mengembang. Pergerakan tabung tersebut akam membuat inti LVDT akan tertekan dan tertarik ujung tabug sehingga LVDT akan menghasilkam nilai induktansi magnetik.
Kontruksi LVDT :

 Sensor Kecepatan ( Motion Sensor )
Pengukuran kecepatan dapat dilakukan dengan cara analog dan cara digital. Secara umum pengukuran kecepatan terbagi dua cara yaitu: cara angular dan cara translasi. Untuk mengukur kecepatan translasi dapat diturunkan dari cara pengukuran angular. Yang dimaksud dengan pengukuran angular adalah pengukuran kecepatan rotasi (berputar), sedangkan pengukuran kecepatan translasi adalah kecepatan gerak lurus beraturan dan kecepatan gerak lurus tidak beraturan.

 Tacho Generator
Sensor yang sering digunakan untuk sensor kecepatan angular adalah tacho generator. Tacho generator adalah sebuah generator kecil yang membangkitkan tegangan DC ataupun tegangan AC. Dari segi eksitasi tacho generator dapat dibangkitkan dengan eksitasi dari luar atau imbas elektromagnit dari magnit permanent.
Tacho generator DC dapat membangkitkan tegangan DC yang langsung dapat menghasilkan informasi kecepatan, sensitivitas tacho generator DC cukup baik terutama pada daerah kecepatan tinggi. Tacho generator DC yang bermutu tinggi memiliki kutub-kutub magnit yang banyak sehingga dapat menghasilkan tegangan DC dengan riak gelombang yang berfrekuensi tinggi sehingga mudah diratakan. Keuntungan utama dari tacho generator ini adalah diperolehnya informasi dari arah putaran. Sedangakan kelemahannya adalah :
 Sikat komutator mudah habis
Jika digunakan pada daerah bertemperatur tinggi, maka magnet permanent akan mengalami kelelahan, untuk kasus ini, tacho generator sering dikalibrasi.

 Peka terhadap debu dan korosi
Tacho generator AC berupa generator singkron, magnet permanent diletakkan dibagian tengah yang berfungsi sebagai rotor. Sedangkan statornya berbentuk kumparan besi lunak. Ketika rotor berputar dihasilkan tegangan induksi di bagian statornya. Tipe lain dari tacho generator AC adalah tipe induksi, rotor dibuat bergerigi, stator berupa gulungan kawat berinti besi. Medan magnet permanent dipasang bersamaan di stator. Ketika rotor berputar, terjadi perubahan medan magnet pada gigi yang kemudian mengimbas ke gulungan stator.

Kelebihan utama dari tacho generator AC adalah relatif tahan terhadap korosi dan debu, sedangkan kelemahannya adalah tidak memberikan informasi arah gerak.

Gambar 3.22. Kontruksi Tacho Generator DC








Gambar 3.23. Kontruksi Tacho Generator AC


Pengukuran Kecepatan Cara Digital.
Pengukuran kecepatan cara digital dapat dilakukan dengan cara induktif, kapasitif dan optik. Pengukuran dengan cara induksi dilakukan menggunakan rotor bergerigi, stator dibuat dari kumparan yang dililitkan pada magnet permanen. Keluaran dari sensor ini berupa pulsa-pulsa tegangan. Penggunaan cara ini cukup sederhana, sangat praktis tanpa memerlukan kopling mekanik yang rumit, serta memiliki kehandalan yang tinggi, tetapi kelemahannya tidak dapat digunakan untuk mengukur kecepatan rendah dan tidak dapat menampilkan arah putaran.

  Kumparan
Induktor
Rotor bergigi




  Magnit
Permanen
Tipe lain sensor kecepatan adalah cara Optik. Rotor dibuat dari bahan metal atau plastik gelap, rotor dibuat berlubang untuk memberi tanda kepada sensor cahaya. Bila diinginkan informasi arah kecepatan, digunakan dua buah sensor yang dipasang berdekatan. Informasi arah gerah dapat diperoleh dengan cara mendeteksi sensor mana yang lebioh dahulu mendapat sinar (aktif). Sensor cahaya sangat peka terhadap pengotor debu, olej karena itu keselurujan bagian sensor (stator dan rotor) harus diletakkan pada kemasan tertutup. Kelebihan sensor ini memiliki linearitas yang sangat tinggi untuk daerah jangkauan yang sangat luas. Kelemahannya adalah masih diperlukan adanya kopling mekanik dengan sistem yang di sensor.



Gambar 3.26. Sensor Kecepatan Cara Optik



Sensor kecepatan digital lain adalah menggunakan kapsitf, yaitu rotor dibuat dari bahan metal, bentuknya bulat. Rotor berputar dengan poros tidak sepusat atau bergeser kepinggir sedikit. Stator dibuat dari bahan metal dipasang dengan melengkung untuk memperbesar sensitivitas dari sensor. Ketika rotor diputar maka akan terjadi perubahan kapasitansi diantara rotor dan stator karena putaran rotor tidak simetris. Penerapan dari sensor ini teruatama jika diperlukan pemasangan sensor kecepatan yang berada dilingkungan fluida.

Gambar 3.27. Sensor Kecepatan Cara Kapasitansi.


 SENSOR OPTIK (CAHAYA)
Sensor optic atau cahaya adalah sensor yang mendeteksi perubahan cahaya dari sumber cahaya, pantulan cahaya ataupun bias cahaya yang mengernai benda atau ruangan. Elemen-elemen sensitive cahaya merupakan alat terandalkan untuk mendeteksi energi cahaya. Alat ini melebihi sensitivitas mata manusia terhadap semua spectrum warna dan juga bekerja dalam daerah-daerah ultraviolet dan infra merah.
Energi cahaya bila diolah dengan cara yang tepat akan dapat dimanfaatkan secara maksimal untuk teknik pengukuran, teknik pengontrolan dan teknik kompensasi. Penggunaan praktis alat sensitif cahaya ditemukan dalam berbagai pemakaian teknik seperti halnya :
 Tabung cahaya atau fototabung vakum (vaccum type phototubes), paling menguntungkan digunakan dalam pemakaian yang memerlukan pengamatan pulsa cahaya yang waktunya singkat, atau cahaya yang dimodulasi pada frekuensi yang relative tinggi.
 Tabung cahaya gas (gas type phototubes), digunakan dalam industri gambar hidup sebagai pengindra suara pada film.
 Tabung cahaya pengali atau pemfotodarap (multiplier phottubes), dengan kemampuan penguatan yang sangat tinggi, sangat banyak digunakan pada pengukuran fotoelektrik dan alat-alat kontrol dan juga sebagai alat cacah kelipan (scientillation counter).
 Sel-sel fotokonduktif (photoconductive cell), juga disebut tahanan cahaya (photo resistor) atau tahanan yang bergantung cahaya (LDR-light dependent resistor), dipakai luas dalam industri dan penerapan pengontrloan di laboratorium.
 Sel-sel foto tegangan (photovoltatic cells), adalah alat semikonduktor untuk mengubah energi radiasi daya listrik. Contoh yang sangat baik adalah sel matahari (solar cell) yang digunakan dalam teknik ruang angkasa.

Divais Elektrooptis
Cahaya merupakan gelombang elektromagnetis (EM) yang memiliki spectrum warna yang berbeda satu sama lain. Setiap warna dalam spectrum mempunyai energi, frekuensi dan panjang gelombang yang berbeda. Hubungan spektrum optis dan energi dapat dilihat pada formula dan gambar berikut.
Energi photon (Ep) setiap warna dalam spektrum cahaya nilainya adalah:


Wp=hf= hc/λ

Dimana:


Wp = energi photon (eV)

h = konstanta Planck’s (6,63 x 10-34 J-s)

c = kecepatan cahaya, Electro Magnetic (2,998 x 108 m/s)

λ = panjang gelombang (m)

f = frekuensi (Hz)

DAFTAR PUSTAKA

 Elektronik_ teori dasar dan penerapannya_jilid 1, 1986, ITB, Bandung
 Pengantar Mekatronika_Diktat Kuliah, Teknik Mesin Univ.Widyagama Malang

Tidak ada komentar:

Posting Komentar